Philadelphia University [image: image1.png]

[image: image3.wmf]
Lecturer
 : Prof. S. Ghoul

Coordinator
 : Prof. S. Ghoul

[image: image4.emf]
Software Reengineering (721421)

1st semester

2019-2020
[image: image5.emf]Basic Notions

1. Answer the following:

[image: image6.emf]1.a
An author presents definitions of program ccomprehension (Table 2-1). Normally, each definition must answer the three questions: Why?, What?, and How?. Identify the answers to these questions in each definition and deduce the most complete one.

((5m)
[image: image7.png]Process every item in a collection
curr := first item
while not at end of collection do
process curr
curr := next item after curr
end while

[image: image8.emf]
[image: image9.emf]
[image: image10.emf]
[image: image11.emf]
1.b the Figure1 presents a program Sum with a general hypothesis on his architecture (on right side). What approach was applied for understanding it? Was it successful?

((5m)

[image: image12.emf]
[image: image13.emf]
2. Answer the following:

2.a
The author presents Sneiderman definition of the Bottom-Up Model for program ccomprehension. In Chapter 3 (slide 15), the same model was introduced. Map between the two definitions and conclude.
((5m)
[image: image14.emf]
There is no semantics recognition in chapter 3 2
[image: image15.emf]2.b The author presents Sneiderman and Mayer’s Bottom-Up Model, which differentiates between syntactic and semantic knowledge of programs. InChapter 3 (slide 9), Letovsky conjunctures was introduced. Map between these conjunctures and the syntax and semantic knowledge.

((5m)
2.c In Chapter 3 (slide 16), an Idiom processing every item in a collection is presented. Identify its syntax and semantic knowledge.

((5m)

[image: image16.emf]
3. Answer the following:

[image: image17.emf]3.a. Sasirekha presents various aspects to be considered in slicing a program. Identify the aspects which are covered in the course.

((5 m)

3.b Explain, on the example Figure 3, the aspects Slicing Point and Slicing Direction.

((10 m)

[image: image18.png]Foreign ISs @

System interfaces

Application modules

Legacy

End users

User interfaces

[image: image19.png]

3.c The Figure 4 (page 4) is a slice generated from Figure 3. Write its criteria and develop the Program Dependence Graphs used to generate this slice from the original program.

((10 m)
Slicing Criteria = 1, Control Dependency Sub-Graph = 2, Program Dependency Graph = 7
[image: image20.png]

[image: image21.png]

Slicing criteria: <8, sum>, Backward slice
II. Familiar Problems Solving

1.
Aswer the following:

1.a Develop the Data Dependency and the Control Dependency analysis of the procedure ReadAr (Figure 1).

((5m)

1.b Understand the program (Figure 1) using the appropriated program understanding strategy and idioms, and Design Patterns, figure 6b.
((5m)

2. Answer the following:

3.a Figure 1 above contains three separated program files (Main, ReadAr, and Sum). Give its Product space representations as in figures a, b, and c introduced, Chapter 2, pages 12-13.

((5m)

3.
Answer the following

3.a Develop the Cross Referencing, the Data Dependency, and the Control Flow Dependencies analysis of the procedure SumM (figure 2).

((5m)

3.b Understand the program (figure 2) using the appropriated program understanding model. Justify your choice.
((5m)

We will use the Bottom up design strategy, because we have no knowledge about the application domain. Figure 2 used the TwoDimArrayProcessing-Pattern in SumM and in Main (as shown). 1 2 2
4. Answer the following:

4.a Apply Delta representation approach, using Word editor, for representing the Delta of the program (figure 2), by changing Read by Cin and Write by Cout.
((5m)

5. Answer the following: Translate this program:

6. Restructure the following program piece 2 and system SA:

6. Answer the following:

5.a Write rules for reverse engineering any Java implementation of a design model into an object-oriented model.
((5 m)

5.b The Figure 14-4 shows that the Faculty is a Person, which is wrong!. Fix the error in the conceptual schema and reengineer the Figure 14.5.

((5 m)

 3 2
5.c Write rules translating any Object-oriented model into relational one.
((5 m)

7. Answer the following
Give forward migration steps for this migration using gateway technique.

 ((5 m)

[image: image22.png]ﬁ Forward gateway

Target Database Services

Initial state Final State (only 1 gate) 5
III. Unfamiliar Problems Solving

1. Answer the following:

1.a Using AND/OR represent the program Figure 1 above for product first selection.
((5m)

1.b A smart version selection method was introducedGeneralize it for selecting several versions.

((5m)

[image: image2.emf]

� EMBED Microsoft Word Picture ���

Faculty of Information Technology

Department of Computer Science

Tutorial Sheet

BSc. Course

Knowledge might be about: Why, What, and How 1

Knowledge might be about: Why, What, and How 1

Understanding might be: Why, What, and How 1

How it works: How 1

The three first definitions are the most complete 1

Applied approach: Top-down because hypothesis of architecture 2

Result: is successful because the hypothesis is satisfied 3

Shneiderman and Mayer’s bottom-up model

Syntactic knowledge is language dependent and focuses on 3 statements and basic units in a program.

Semantic knowledge on the other hand is language independent and is built progressively until a mental model can be formulated that describes the application domain. The final mental model is thus obtained through the chunking and aggregation of semantic components and syntactic fragments of source code.

bottom-up model

�

Shneiderman and Mayer’s bottom-up model

Syntactic knowledge is language dependent and focuses on 3 statements and basic units in a program.

Semantic knowledge on the other hand is language independent and is built progressively until a mental model can be formulated that describes the application domain. The final mental model is thus obtained through the chunking and aggregation of semantic components and syntactic fragments of source code. 2

Letovsky conjonctures

�

[1 and 3] Chap 3, slide 16

�

Shneiderman and Mayer’s bottom-up model

Syntactic knowledge 2

Semantic knowledge 3

Slicing variables. (

Type of the result: (0.5 each + 0.5 if no error

Slicing Point: (

Scope: (

Slicing Direction: (

Abstraction Level: (

Type of Information: (

Computational Method: (

Output format: (

(1) DataInputStream d = new DataInputStream(System.in);

(2) terminate_var= Integer.parseInt(d.readLine());

(4) sum=1;

(5) for(counter=1; counter<=terminate_var; counter++)

{

 (6) sum=sum+counter;

}

(8) System.out.println(“The Sum is : “+sum); //Slicing point

Figure 4 is A Slicing Point effect before statement 8 5

Figure 4 is A Backward Slicing direction effect wrt <8, sum> 5

Any explanation (which is already given in the paper) without a description of the effect as:

Figure 3 (as input) (Produced effect (as output)

Is wrong.

DataInputStream d = new DataInputStream (System.in);

terminate_var = Integer.parseInt(d.readLine());

product =1;

sum =1;

for(counter =1; counter <= terminate_var; counter ++)

{

 Sum = sum+counter;

 Product = product*counter;

}

Average = (sum -1)/terminate_var;

System.out.println(“The Sum is : “+sum);

System.out.println(“The Product is : “ + product);

System.out.println(“The Average is : “ +average);

Figure 3: Original

Enter

sum = 1

ctr = 1

while(ctr (TrVar)

printl(sum)

sum = sum + ctr

ctr = ctr + 1

T

T

T

T

T

T

T

T

printl(prod)

prod = 1

prod = prod * ctr

printl(avg)

T

01

06

04

05

07

08

10

09

02

A Control Dependency Graph 2

01

04

08

05

07

01ReadAr (N) // Reading Array

02Begin

03 Int I;

04 I (1;

05 While (I (N) do

06 Begin

07 Read A[I];

08 I (I + 1;

09 End while

10 End // ReadAr

Figure 1 (continued)

A Data Dependency Graph 3

1. Sum (L, R, S) // Summing Array values 1.5

 {…}

How: it matches the Design Pattern

What: Summing array Values

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2,…, Sub SolN);

}

2. ReadAr (N) // Reading Array 1.5

 {…}

How: it matches the Design Pattern

What: Reading an Array

�

3. int A[5]; // Main program 2

Main ()

Begin

 Int SA;

 ReadAr (5);

 Sum (5, 5. SA);

 Write SA;

 End //Main

How: it matches the Design Pattern

What: Reading the Array A,

 Summing its values in SA,

 Writing SA

Function-Call-Pattern()

 Function-name (parameters);

End Function-Call-Pattern;

(b) 1

Sys main.c main.o main.e ReadAr.c ReadAR.o Sum.c Sum.o

SA

(c) 3

 M R S

 M.e M.c M.o R.c R.o S.c S.o

SA

(a) 1

 Main

RaedAr Sum

Data Dependencies Graph 2

0

3

4

12

7

6

15

5

10

9

13

X-Ref table	1

R_Name Def_in Used_in

Sum		 00	 05, 12	

I			 03	 06, 07, 12, 15	

J			 04 	 09, 10, 12, 13

		

			

00 int Sum;

01 SumM (Mt, N, M)

02 Begin

03 Int I,

04 Int j

05 Sum (0;

06 I (1;

07 While (I (N) do

08 Begin

09 J (1;

10 While (J (M) do

11 Begin

12 Sum (Sum + Mt[I, J];

13 J (J + 1;

14 End while

15 I (I + 1;

16 End while

17 End // SumM

Figure 2. A legacy program

10

1

2

3

4

5

9

12

13

15

A Control Flow Graph 2

0

6

7

16

17

TwoDimArrayProcessing-Pattern (A, NbRow, NbColumn)

Begin

 // this pattern defines a 2 Dim Array Processing Pattern

 Int Cur_Row, Cur_Column

 Cur_Row (1;

 While (Cur_Row (NbRow) do

 Begin // Cur_Row processing

 Cur_Column (1;

 While (Cur_Column (NbColumn) do //

 Begin // Cur_Column processing

	 Process A[Cur_Column, Cur_Row];

	 Cur_Colmn (Cur_Column + 1;

 End // Cur_Column processing		

 Cur_Row (Cur_Row + 1;

 End // Cur_Row processing			

End TwoDimArrayProcessing-Pattern;		

Figure 1. A domain Pattern for TwoDimArrayProcessing

int Sum;

SumM (Mt, N, M)

Begin

 Int I, j

 Sum (0;

 I (1;

 While (I (N) do

 Begin

 J (1; // Process

 While (J (M) do

 Begin // Process

 Sum (Sum+ Mt[I, J];

 J (J + 1;

 End while

 I (I + 1;

 End while

 End // SumM

Figure 2. A legacy program

Main ()

Begin

 Int A [5,5], I, j

 I (1;

 While (I (5) do

 Begin

 J (1; //Process

 While (J (5) do

 Begin //Process

 Read A[I, J];

 J (J + 1;

 End

 I (I + 1;

 End

 SumM(A, 5, 5);

 Write Sum;

 End //Main

Figure 2 (continued)

Function-Call-Pattern()

Begin //Function Call pattern

 Function-name (parameters);

End Function-Call-Pattern;

Figure 3. A Domain Pattern for

 Function call

Figure 2 version 1 by Delta

// by operation based approach

Replace Read (*) with cin << * 2.5

Replace Write (*) with Cout >> * 2.5

int Sum;

SumM (Mt, N, M)

Begin

 Int I, j

 Sum (0; I (1;

 While (I (N) do

 Begin

 J (1;

 While (J (M) do

 Begin

 Sum (Sum + Mt[I, J];

 J (J + 1;

 End while

 I (I + 1;

 End while

 End // SumM

Figure 2. A legacy program

Main ()

Begin

 Int A [5,5], I, j

 I (1;

 While (I (5) do

 Begin

 J (1;

 While (J (5) do

 Begin

 Read A[I, J];

 J (J + 1;

 End

 I (I + 1;

 End

 SumM(A, 5, 5);

 Write Sum;

 End //Main

Figure 2 (continued)

Piece 2

#include min, store, Print

Const N = 10;

Type	

 index = 1..N;

 distance = 1..100;

Var	

 distance D [N, N];

Main ShortestParh ();

 Procedure	

 Dynamic();

 Begin

 Index I, J, K

 for (k = 0, k (N, K ++)

 for (I = 0, I(N, I ++)

 for (J = 0, J(N,J ++)

 {D [I, J] (

 Min (D[I,J], D[I, K]+D[K, J])

 }

 End//End Dynamic;

 Begin

 Store (D); Dynamic (); Print (D);

 End. //Main

	

Piece 1

A PL is defined by the following Concepts (“//” means comment):

1. Main

 Global // Optional

main main_name ();

	// Declarations

 Const	//optional constants

 Type	//optional types

 Var	//optional variables

 Procedure // optional procedures

begin	

 …	//Actions

end. //End main

A PL is defined by the following Concepts:

1. Programming procedure:

Proc-Name (<Parameters>)

{	// Declarations

 [<Const>]	

 [<Type>]

 [<Var>]

 [<Procedure>]

	

	//Actions

 <Actions>	

	// Statements

} //End Proc-Name

<C> = <V>

While (<C> <op> <Size>) do

{ <Action>,

 <C> = <C> +1

}

For (<C> = <V>, <C> <op> <Size>, <C> ++)

 <Action>

SA

 M R S

 T

P ()

{Read (x)

 For (I = 1; I< x, I ++)

 {if (x = 3) goto R;

 write I + x;

 }

 write I;

 R : return I

}

Piece 2.

 public class <class name> 1

 {

 private <private list>;

 public <public list>

 }

public class <class name> extends super class

 2

public class <class name> 1

 {

 private Set<component class> var name; 2

Class name

- private list;

+ public list

Class name

- private list;

+ public list

Super class

Class name

- private list;

+ public list

Component class

- var name

*

1

�

�

Faculty Member

�

�

Faculty member

Class name

- private list;

+ public list

Class name

- private list;

+ public list

Super class

Class name

- private list;

+ public list

Super class

- var name

*

1

 Class name (key, private list) 1

class name (private list, super class key)

 2

class name (private list, super class key)2

 (a) Product first 5 SA

 Sy M R S

ProblemMMSelection()

{ loop 5

Input sentence describing problem;

SentenceConvirtingToRule();

IF find schema Then

GenerateRuleForModel();

Else

 { Input example

 ExampleConvirtingToRule();

 GenerateRuleForModel();

 }

 Until last selection

}

SE BSc degree course Software Reengineering Tutorials
 7/7

_146954828.doc
[image: image1.png]

